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Outline 

• Recall BLAS = Basic Linear Algebra Subroutines 

• Matrix-vector multiplication in parallel 

• Matrix-matrix multiplication in parallel 
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Review of the BLAS 

BLAS  level Ex. # mem refs # flops q  

1 “Axpy”,    

 Dot prod 

3n 2n1 2/3 

2 Matrix

-vector

 mult 

n2 2n2 2 

3 Matrix

-matrix

 mult 

4n2 2n3 n/2 

• Building blocks for all linear algebra 

• Parallel versions call serial versions on each processor 

• So they must be fast! 

• Define q = # flops / # mem refs = “computational intensity” 

• The larger is q, the faster the algorithm can go in the 

 presence of memory hierarchy 

• “axpy”:  y = *x + y, where  scalar, x and y vectors 
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Different Parallel Data Layouts for Matrices 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 1 2 3 0 1 2 3 

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout 

3) 1D Column Block Cyclic Layout 

4) Row versions of the previous layouts 

Generalizes others 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 6) 2D Row and Column

 Block Cyclic Layout 

0 1 2 3 

0 1 

2 3 

5) 2D Row and Column Blocked Layout 

b 
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Parallel Matrix-Vector Product 

• Compute y = y + A*x, where A is a dense  matrix 

• Layout:  

• 1D row blocked 

• A(i) refers to the n by n/p block row                                                   

 that processor i owns,  

• x(i) and y(i) similarly refer to                                                        

 segments of x,y owned by i 

• Algorithm: 

• Foreach processor i 

•    Broadcast x(i) 

•    Compute y(i) = A(i)*x 

• Algorithm uses the formula 

y(i) = y(i) + A(i)*x = y(i) + j A(i,j)*x(j) 

x 

y 

P0 

P1 

P2 

P3 

P0   P1    P2     P3 

A(0) 

A(1) 

A(2) 

A(3) 
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Matrix-Vector Product y = y + A*x 

• A column layout of the matrix eliminates the broadcast of x 

• But adds a reduction to update the destination y 

• A 2D blocked layout uses a broadcast and reduction, both

 on a subset of processors 

• sqrt(p) for square processor grid 

P0     P1    P2    P3 

P0      P1     P2    P3 

P4      P5     P6    P7 

P8     P9     P10   P11 

P12    P13   P14   P15 
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Parallel Matrix Multiply 

• Computing C=C+A*B 

• Using basic algorithm: 2*n3 Flops 

• Variables are: 

• Data layout 

• Topology of machine  

• Scheduling communication 

• Use of performance models for algorithm design 

• Message Time = “latency” + #words * time-per-word 

                   =  + n*  

• Efficiency (in any model): 

• serial time / (p *  parallel time) 

• perfect (linear) speedup  efficiency = 1 
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Matrix Multiply with 1D Column Layout 

• Assume matrices are n x n and n is divisible by p 

• A(i) refers to the n by n/p block column that processor i

 owns (similiarly for B(i) and C(i)) 

• B(i,j) is the n/p by n/p sublock of B(i)  

• in rows j*n/p through (j+1)*n/p 

• Algorithm uses the formula 

C(i) = C(i) + A*B(i) = C(i) + j A(j)*B(j,i) 

p0  p1  p2  p3  p5  p4  p6  p7  

May be a reasonable

 assumption for analysis,

 not for code 
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Matrix Multiply: 1D Layout on Bus or Ring 

• Algorithm uses the formula 

C(i) = C(i) + A*B(i) = C(i) + j A(j)*B(j,i) 

• First consider a bus-connected machine without

 broadcast:  only one pair of processors can

 communicate at a time (ethernet) 

• Second consider a machine with processors on a ring:

 all processors may communicate with nearest neighbors

 simultaneously 
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MatMul: 1D layout on Bus without Broadcast 

Naïve algorithm: 

    C(myproc) = C(myproc) + A(myproc)*B(myproc,myproc) 

     for i = 0 to p-1 

        for j = 0 to p-1 except i  

            if (myproc == i) send A(i) to processor j 

            if (myproc == j)  

                 receive A(i) from processor i 

                 C(myproc) = C(myproc) + A(i)*B(i,myproc) 

            barrier 

Cost of inner loop: 

       computation: 2*n*(n/p)2 = 2*n3/p2  

       communication:  + *n2  /p 
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Naïve MatMul (continued) 

Cost of inner loop: 

       computation: 2*n*(n/p)2 = 2*n3/p2  

       communication:  + *n2 /p        … approximately 

Only 1 pair of processors (i and j) are active on any iteration, 

  and of those, only i is doing computation 

                   => the algorithm is almost entirely serial 

Running time:  

         = (p*(p-1) + 1)*computation +  p*(p-1)*communication 

        ~= 2*n3 + p2*  + p*n2*

 This is worse than the serial time and grows with p. 

Why might you still want to do this? 
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Matmul for 1D layout on a Processor Ring 

• Pairs of processors can communicate simultaneously 

Copy A(myproc) into Tmp

C(myproc) = C(myproc) + Tmp*B(myproc , myproc)

for j = 1 to p-1

      Send Tmp to processor myproc+1 mod p

      Receive Tmp from processor myproc-1 mod p

      C(myproc) = C(myproc) + Tmp*B( myproc-j mod p , myproc)

• Same idea as for gravity in simple sharks and fish algorithm

• May want double buffering in practice for overlap

• Ignoring deadlock details in code
• Time  of inner loop = 2*(  + *n2/p) + 2*n*(n/p)2
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Matmul for 1D layout on a Processor Ring 

• Time  of inner loop = 2*(  + *n2/p) + 2*n*(n/p)2 

• Total Time  = 2*n* (n/p)2  +  (p-1) * Time of inner loop 

•                      ~ 2*n3/p  + 2*p*  + 2* *n2 

• (Nearly) Optimal for 1D layout on Ring or Bus, even with

 Broadcast: 

•  Perfect speedup for arithmetic 

•  A(myproc) must move to each other processor, costs at

 least 

               (p-1)*cost of sending n*(n/p) words     

• Parallel Efficiency = 2*n3 / (p * Total Time)  

                                = 1/(1 +  * p2/(2*n3) +  * p/(2*n) ) 

                                = 1/ (1 + O(p/n)) 

•  Grows to 1 as n/p increases (or  and  shrink) 
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MatMul with 2D Layout 

• Consider processors in 2D grid (physical or logical) 

• Processors can communicate with 4 nearest neighbors 

• Broadcast along rows and columns  

• Assume p processors form square s x s grid,  s = p1/2 

 p(0,0)        p(0,1)       p(0,2) 

 p(1,0)        p(1,1)       p(1,2) 

 p(2,0)        p(2,1)       p(2,2) 

 p(0,0)        p(0,1)       p(0,2) 

 p(1,0)        p(1,1)       p(1,2) 

 p(2,0)        p(2,1)       p(2,2) 

 p(0,0)        p(0,1)       p(0,2) 

 p(1,0)        p(1,1)       p(1,2) 

 p(2,0)        p(2,1)       p(2,2) 

= *
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Cannon’s Algorithm 

… C(i,j) = C(i,j) +   A(i,k)*B(k,j) 

…  assume s = sqrt(p) is an integer 

   forall  i=0 to s-1              …  “skew” A 

         left-circular-shift row i of A by i 

         … so that A(i,j) overwritten by A(i,(j+i)mod s) 

   forall  i=0 to s-1               …  “skew” B 

         up-circular-shift column i of B by i 

          … so that B(i,j) overwritten by B((i+j)mod s), j) 

   for k=0 to s-1        … sequential 

          forall i=0 to s-1 and j=0 to s-1    … all processors in parallel 

               C(i,j) = C(i,j) + A(i,j)*B(i,j) 

               left-circular-shift each row of A by 1 

               up-circular-shift each column of B by 1  

k 
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C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2) 

Cannon’s Matrix Multiplication 
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Initial Step to Skew Matrices in Cannon 

• Initial blocked input 

• After skewing before initial block multiplies 

A(1,0) 

A(2,0) 

A(0,1) A(0,2) 

A(1,1) 

A(2,1) 

A(1,2) 

A(2,2) 

A(0,0) 

B(0,1) B(0,2) 

B(1,0) 

B(2,0) 

B(1,1) B(1,2) 

B(2,1) B(2,2) 

B(0,0) 

A(1,0) 

A(2,0) 

A(0,1) A(0,2) 

A(1,1) 

A(2,1) 

A(1,2) 

A(2,2) 

A(0,0) 

B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 
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Skewing Steps in Cannon 
All blocks of A must multiply all like-colored blocks of B 

• First step 

• Second 

• Third 

A(1,0) 

A(2,0) 

A(0,1) A(0,2) 

A(1,1) 

A(2,1) 

A(1,2) 

A(2,2) 

A(0,0) 

B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 

A(1,0) 

A(2,0) 

A(0,1) A(0,2) 

A(2,1) 

A(1,2) B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 

A(1,0) 

A(2,0) 

A(0,1) A(0,2) 

A(1,1) 

A(2,1) 

A(1,2) 

A(2,2) 

A(0,0) B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 

A(1,1) 

A(2,2) 

A(0,0) 
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Cost of Cannon’s Algorithm 
  forall  i=0 to s-1              …  recall s = sqrt(p) 

         left-circular-shift row i of A by i    … cost  s*(  + *n2/p) 

   forall  i=0 to s-1 

         up-circular-shift column i of B by i … cost  s*(  + *n2/p) 

   for k=0 to s-1 

          forall  i=0 to s-1 and j=0 to s-1 

               C(i,j) = C(i,j) + A(i,j)*B(i,j)   … cost = 2*(n/s)3 = 2*n3/p3/2 

               left-circular-shift each row of A by 1   … cost =  + *n2/p 

               up-circular-shift each column of B by 1     … cost =  + *n2/p 

° Total Time = 2*n3/p +  4* s*  + 4* *n2/s   

° Parallel Efficiency = 2*n3 / (p * Total Time) 

                                  = 1/( 1 +  * 2*(s/n)3 +  * 2*(s/n) ) 

                                  = 1/(1 + O(sqrt(p)/n))  

° Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows 

° Better than 1D layout, which had Efficiency = 1/(1 + O(p/n)) 
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Pros and Cons of Cannon 

• Local computation one call to (optimized) matrix-multiply 

• Hard to generalize for 

• p not a perfect square 

• A and B not square 

• Dimensions of A, B not perfectly divisible by

 s=sqrt(p) 

• A and B not “aligned” in the way they are stored on

 processors 

• block-cyclic layouts 

• Memory hog (extra copies of local matrices) 
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SUMMA Algorithm 

• SUMMA = Scalable Universal Matrix Multiply  

• Slightly less efficient, but simpler and easier to

 generalize 

• Presentation from van de Geijn and Watts 

• www.netlib.org/lapack/lawns/lawn96.ps 

• Similar ideas appeared many times 

• Used in practice in PBLAS = Parallel BLAS 

• www.netlib.org/lapack/lawns/lawn100.ps 
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SUMMA  

*  = 
i

j

A(i,k)

k

k

B(k,j)

•   i, j represent all rows, columns owned by a processor
•   k is a block of b  1 rows or columns 

•  C(i,j) = C(i,j) + k A(i,k)*B(k,j)

•   Assume a pr by pc processor grid (pr = pc = 4 above) 
• Need not be square          

C(i,j) 
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SUMMA  

For k=0 to n-1     … or n/b-1 where b is the block size  

                            …  = # cols in A(i,k) and # rows in B(k,j)  

     for all i = 1 to pr   … in parallel 

           owner of A(i,k) broadcasts it to whole processor row 

     for all j = 1 to pc  … in parallel 

            owner of B(k,j) broadcasts it to whole processor column 

     Receive A(i,k) into Acol 

     Receive B(k,j) into Brow 

     C_myproc  = C_myproc  + Acol * Brow 

*  = 
i

j

A(i,k)

k

k

B(k,j)

C(i,j) 
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SUMMA performance  

For k=0 to n/b-1 

     for all i = 1 to s   …  s = sqrt(p) 

           owner of A(i,k) broadcasts it to whole processor row 

               … time = log s *(  +  * b*n/s), using a tree 

     for all j = 1 to  s 

            owner of B(k,j) broadcasts it to whole processor column 

              … time = log s *(  +  * b*n/s), using a tree 

     Receive A(i,k) into Acol 

     Receive B(k,j) into Brow 

     C_myproc = C_myproc + Acol * Brow 

              … time = 2*(n/s)2*b 

° Total time = 2*n3/p   +    * log p * n/b   +    * log p * n2 /s

° To simplify analysis only, assume s = sqrt(p)
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SUMMA performance  

•  Total time = 2*n3/p   +    * log p * n/b   +    * log p * n2 /s

•  Parallel Efficiency = 

       1/(1 +  * log p * p / (2*b*n2)  +  * log p * s/(2*n) )

•  ~Same  term as Cannon, except for log p factor

          log p grows slowly so  this is ok

•  Latency ( ) term can be larger, depending on b

          When b=1, get   * log p * n 

          As b grows to n/s, term shrinks to 

                     * log p * s  (log p times Cannon)

•  Temporary storage grows like 2*b*n/s

•  Can change b to tradeoff latency cost with memory
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ScaLAPACK Parallel Library 
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PDGEMM =  PBLAS routine 

      for matrix multiply 

Observations: 

    For fixed N, as P increases 

       Mflops increases, but 

       less than 100% efficiency 

    For fixed P, as N increases, 
       Mflops (efficiency) rises 

DGEMM = BLAS routine 

      for matrix multiply 

Maximum speed for PDGEMM 

     = # Procs * speed of DGEMM 

Observations (same as above): 

     Efficiency always at least 48% 
     For fixed N, as P increases, 

         efficiency drops  

     For fixed P, as N increases, 

         efficiency increases 
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Recursive Layouts 

• For both cache hierarchies and parallelism, recursive

 layouts may be useful 

• Z-Morton, U-Morton, and X-Morton Layout 

• Also Hilbert layout and others 

• What about the user’s view? 

• Fortunately, many problems can be solved on a

 permutation 

• Never need to actually change the user’s layout 
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Summary of Parallel Matrix Multiplication 

• 1D Layout 

• Bus without broadcast - slower than serial 

• Nearest neighbor communication on a ring (or bus with

 broadcast): Efficiency = 1/(1 + O(p/n)) 

• 2D Layout 

• Cannon 

• Efficiency = 1/(1+O(   ( sqrt(p) /n)3 + * sqrt(p) /n)) 

• Hard to generalize for general p, n, block cyclic, alignment  

• SUMMA 

• Efficiency = 1/(1 + O(   log p * p / (b*n2) + log p * sqrt(p) /n)) 

• Very General 

• b small => less memory, lower efficiency 

• b large => more memory, high efficiency 

• Recursive layouts 
• Current area of research 
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Extra Slides
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Gaussian Elimination 

0 
x 

x 

x 
x 

Standard Way 
subtract a multiple of a row 

0 

x 

0 
0 

. . . 

0 

LINPACK 
apply sequence to a column 

x 

nb 

         then apply nb to rest of matrix 

a3=a3-a1*a2 

a3 

a2 

a1 

L 

a2 =L-1 a2 

0 

x 

0 
0 

. . . 

0 

nb                        LAPACK 
apply sequence to nb                                                           

Slide source: Dongarra 
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LU Algorithm: 
   1: Split matrix into two rectangles (m x n/2) 
          if only 1 column, scale by reciprocal of pivot & return 

   2: Apply LU Algorithm to the left part 

   3: Apply transformations to right part  
         (triangular solve A12 = L-1A12 and                 
          matrix multiplication A22=A22 -A21*A12 ) 

   4: Apply LU Algorithm to right part 

Gaussian Elimination via a Recursive Algorithm 

L A12 

A21 A22 

F. Gustavson and S. Toledo 

Most of the work in the matrix multiply  
Matrices of size n/2, n/4, n/8, … 

Slide source: Dongarra 



02/09/2006 CS267 Lecture 8 33

Recursive Factorizations 

• Just as accurate as conventional method 

• Same number of operations 

• Automatic variable blocking 

• Level 1 and 3 BLAS only ! 

• Extreme clarity and simplicity of expression 

• Highly efficient 

• The recursive formulation is just a rearrangement of the point-wise
 LINPACK algorithm 

• The standard error analysis applies (assuming the matrix

 operations are computed the “conventional” way). 

Slide source: Dongarra 
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LAPACK 

Recursive LU 

Recursive LU 

LAPACK 

Dual-processor 

Uniprocessor 

Slide source: Dongarra 
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Review: BLAS 3 (Blocked) GEPP 

for   ib = 1 to n-1 step b     … Process matrix b columns at a time 

     end = ib + b-1                … Point to end of block of b columns  

     apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’ 

     … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I 

     A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n)         … update next b rows of U 

     A(end+1:n , end+1:n ) = A(end+1:n , end+1:n ) 

                  - A(end+1:n , ib:end) * A(ib:end , end+1:n)     

                                       … apply delayed updates with single matrix-multiply 

                                       … with inner dimension b 

BLAS 3 
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Review: Row and Column Block Cyclic Layout 

processors and matrix blocks 

are distributed in a 2d array 

pcol-fold parallelism 

in any column, and calls to the  

BLAS2 and BLAS3 on matrices of  

size brow-by-bcol 

serial bottleneck is eased 

need not be symmetric in rows and 

columns 
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Distributed GE with a 2D Block Cyclic Layout 

block size b in the algorithm and the block sizes brow  

and bcol in the layout satisfy b=brow=bcol.  

shaded regions indicate busy processors or  

communication performed. 

unnecessary to have a barrier between each  

step of the algorithm, e.g.. step 9, 10, and 11 can be  
pipelined 
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Distributed GE with a 2D Block Cyclic Layout 



02/09/2006 CS267 Lecture 8 39

M
a
tr

ix
 m

u
lt

ip
ly

 o
f 

 g
re

e
n

 =
 g

re
e
n

 -
 b

lu
e
 *

 p
in

k
 



02/09/2006 CS267 Lecture 8 40

PDGESV = ScaLAPACK  
       parallel LU routine 

Since it can run no faster than its 

    inner loop (PDGEMM), we measure: 
Efficiency =  
     Speed(PDGESV)/Speed(PDGEMM) 

Observations: 

     Efficiency well above 50% for large 
          enough problems 
     For fixed N, as P increases, 

         efficiency decreases  
          (just as for PDGEMM) 

     For fixed P, as N increases 
         efficiency increases 
          (just as for PDGEMM) 

     From bottom table, cost of solving 
          Ax=b about half of matrix multiply 

          for large enough matrices. 
          From the flop counts we would 
          expect it to be (2*n3)/(2/3*n3) = 3 

          times faster, but communication 
          makes it a little slower. 
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Scales well,  

   nearly full machine speed 
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Old version, 

pre 1998 Gordon Bell Prize 

Still have ideas to accelerate 
Project Available! 

Old Algorithm, 

    plan to abandon 
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Have good ideas to speedup 

Project available! 

Hardest of all to parallelize 

Have alternative,  and 

      would like to compare 

Project available! 
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Out-of-core means 

  matrix lives on disk; 
  too big for main mem 

Much harder to hide 

  latency of disk 

QR much easier than LU 

  because no pivoting 
  needed for QR 

Moral: use QR to solve Ax=b 

Projects available 
  (perhaps very hard…) 
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A small software project ... 
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Work-Depth Model of Parallelism 

• The work depth model: 

• The simplest model is used 

• For algorithm design, independent of a machine 

• The work, W, is the total number of operations 

• The depth, D, is the longest chain of dependencies 

• The parallelism, P, is defined as W/D 

• Specific examples include: 

• circuit model, each input defines a graph with ops at

 nodes 

• vector model, each step is an operation on a vector of

 elements 

• language model, where set of operations defined by

 language 
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Latency Bandwidth Model 

• Network of fixed number P of processors 

• fully connected 

• each with local memory 

• Latency ( ) 

• accounts for varying performance with number of

 messages 

• gap (g) in logP model may be more accurate cost if

 messages are pipelined 

• Inverse bandwidth ( ) 

• accounts for performance varying with volume of data 

• Efficiency (in any model): 

• serial time / (p *  parallel time) 

• perfect (linear) speedup  efficiency = 1 
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Initial Step to Skew Matrices in Cannon 

• Initial blocked input 

• After skewing before initial block multiplies 

A(0,1) A(0,2) 

A(1,0) 

A(2,0) 

A(1,1) A(1,2) 

A(2,1) A(2,2) 

A(0,0) 

B(0,1) B(0,2) 

B(1,0) 

B(2,0) 

B(1,1) B(1,2) 

B(2,1) B(2,2) 

B(0,0) A(0,1) A(0,2) 

A(1,0) 

A(2,0) 

A(1,1) A(1,2) 

A(2,1) A(2,2) 

A(0,0) 

B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 
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Skewing Steps in Cannon 

• First step 

• Second 

• Third 

A(0,1) A(0,2) 

A(1,0) 

A(2,0) 

A(1,1) A(1,2) 

A(2,1) A(2,2) 

A(0,0) 

B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 

A(0,1) A(0,2) 

A(1,0) 

A(2,0) 

A(1,2) 

A(2,1) 

B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 

A(0,1) A(0,2) 

A(1,0) 

A(2,0) 

A(1,1) A(1,2) 

A(2,1) A(2,2) 

A(0,0) B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 

A(1,1) 

A(2,2) 

A(0,0) 


